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Abstract: Given a nucleic acid sequence, a recent algorithm allows the calculation of the partition function over
secondary structure space including a class of physically relevant pseudoknots. Here, we present a method for computing
base-pairing probabilities starting from the output of this partition function algorithm. The approach relies on the
calculation of recursion probabilities that are computed by backtracking through the partition function algorithm,
applying a particular transformation at each step. This transformation is applicable to any partition function algorithm
that follows the same basic dynamic programming paradigm. Base-pairing probabilities are useful for analyzing the
equilibrium ensemble properties of natural and engineered nucleic acids, as demonstrated for a human telomerase RNA
and a synthetic DNA nanostructure.
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Introduction

Thermodynamic models based on nucleic acid secondary structure
and nearest-neighbor identities1–5 underly dynamic programming
algorithms for predicting the minimum energy secondary struc-
ture6–10 and calculating the partition function over secondary
structure space.10–12 In their original forms, these algorithms ex-
clude the possibility of pseudoknots, a biologically relevant class
of secondary structures13 that also arises in DNA nanotechnology
applications.14,15 Pseudoknots result when two base pairs i ! j and
d ! e, with i ! d, fail to satisfy the nesting property i ! d ! e !
j (see, e.g., Fig. 1). Recent extensions of the structure predic-
tion16–18 and partition function18 algorithms allow the inclusion of
certain pseudoknots.

For an ensemble of secondary structures s ! ", the partition
function

Q ! !
s!"

e#Gs/RT

may be used to compute the probability

p$s*% !
1
Q

e#Gs*/RT (1)

that secondary structure s* is sampled at thermodynamic equilib-
rium. The ensemble equilibrium can also be characterized by the
matrix of base-pairing probabilities with entries pi, j corresponding
to the probability that base i is paired with base j in ".

McCaskill’s original article11 defines elegant dynamic pro-
grams to compute the partition function and base-pairing proba-
bilities over the ensemble of unpseudoknotted secondary struc-
tures. The partition function algorithm builds up recursively from
short subsequences to the full strand, and then the pair probabilities
are computed by working backwards to short subsequences using
intermediate results from the partition function calculation. In the
absence of pseudoknots, the partition function algorithm is suffi-
ciently succinct that McCaskill is able to determine the form of the
pair probability backtrack algorithm simply by considering the few
possible forms of enclosing secondary structure for any given base
pair. Although this approach is simple and efficient, it is not easily
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generalizable to algorithmic extensions, such as the inclusion of
pseudoknots. Here, we describe a general method for mechanically
transforming the new pseudoknot partition function algorithm18 to
compute recursion probabilities, which can be used in turn to
compute base-pairing probabilities. The transformation approach
is generalizable to any future partition function extensions that
follow the same dynamic programming paradigm.

Base-pairing probabilities assist in the analysis of biologically
relevant pseudoknots. Here, we examine human telomerase RNA,
which exists at equilibrium in both hairpin and pseudoknotted
forms.19 A two-point mutation, implicated in the disease dysker-
atosis congenita, alters the thermodynamic balance between these
competing structures.20 This shift in equilibrium is clearly identi-
fiable when the base-pairing probabilities for the two sequences
are compared. Base-pairing probabilities that permit pseudoknots
are also useful in analyzing synthetic DNA nanostructures.14,15

Algorithm

For clarity, we begin by considering the class of secondary struc-
tures excluding pseudoknots and then address the additional com-
plexity that arises when pseudoknots are introduced.

Partition Function Recursions

For a strand of length N, the partition function may be computed
over all unpseudoknotted secondary structures in O(N4) using the
algorithm10,11 summarized in Figure 2 (see ref. 18 for a detailed

description in the same notation). [The complexity may be reduced
to O(N3) by exploiting the formulation of the nearest-neighbor
energy model for long interior loops.18,21] Partition function re-
cursions are nonredundant in the sense that every secondary struc-
ture in the ensemble " is visited exactly once using a unique
sequence of recursions. The algorithm computes the partition
function Qi, j for each subsequence [i, j] ignoring all bases exterior
to [i, j], starting from subsequences of length l & 1 and building
up incrementally to l & N. The recursions that define Qi, j rely on
additional restricted partition functions Qi, j

b and Qi, j
m . Qi, j

b repre-
sents the partition function for subsequence [i, j] given that i and
j are base paired and Qi, j

m is used to calculate multiloop contribu-
tions. At the end of the recursive process, the full partition function
Q is given by Q1,N and the values of Qi, j, Qi, j

b , Qi, j
m are stored in

matrices for 1 " i, j " N. These intermediate results will play a
critical role in the new algorithm described below.

Recursion Probabilities

Following the execution of the partition function calculation, a
second algorithm can be implemented to calculate probability
matrices, P, Pb, Pm, corresponding to the Q, Qb, Qm matrices.
The values stored in these P-type matrices will be termed recur-
sion probabilities.

Recursion probabilities can be intuitively described as follows.
Consider sampling the ensemble of secondary structures s ! "
where the probability of selecting structure s* is given by the
Boltzmann probability (1). For each secondary structure s*, the
contribution to Q is computed by a unique recursion sequence
involving specific Qi, j, Qi, j

b , and Qi, j
m intermediates. Associating

these intermediates with structure s*, the recursion probability
Pi, j, Pi, j

b or Pi, j
m corresponds to the probability that the sampled

structure s* requires the use of the corresponding intermediate
Qi, j, Qi, j

b or Qi, j
m to calculate the partition function contribution.

Recent work by Ding and Lawrence22 exploits quantities re-
lated to recursion probabilities to statistically sample the distribu-
tion of unpseudoknotted secondary structures for a given sequence.
Here, we develop a general approach for computing P-type ma-

Figure 1. Secondary structures of competing pseudoknot and hairpin
constructs in human telomerase RNA. The wild-type sequence is
shown. For the two-point mutant implicated in dyskeratosis congenita,
GC is replaced by AG in the shaded boxes, disrupting two base pairs
in the pseudoknot construct. For the experimental studies of the hairpin
structure,20 the 18 nucleotides at the 3' end are excluded to prevent
formation of the pseudoknot.

Figure 2. O(N4) partition function algorithm that excludes
pseudoknots.
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trices given a set of Q-type matrices and corresponding partition
function recursions.

An algorithm for computing recursion probabilities can be
formulated in a mechanical way starting from a set of partition
function recursions. The crux of this formulation is the repeated
application of a single transformation to the partition function
code. In particular, updates of the form

Qi, j (& Qi,d#1Qd,e
b (2)

(equivalent to the recursion diagram of Fig. 3) are converted to the
following series of statements

)p ! Pi, j Qi,d#1Qd,e
b /Qi, j

conditional probability

Pi,d#1 (& )p

Pd,e
b (& )p (3)

Specifically, the right-hand side (RHS) of each recursive update is
divided by the left-hand side (LHS), and the P term corresponding
to the new denominator is multiplied by this quotient. The result-
ing probabilities, temporarily stored as )p, are subsequently added
to every P-type value corresponding to the Q-type terms on the
RHS of the original statement (2).

To understand this transformation, recall that Qi, j, Qi, j
b and Qi, j

m

are partition functions for structural subclasses of the full se-
quence. In recursive updates such as (2), the ratio of the RHS to the
fully computed LHS corresponds to the probability that a structure
drawn from an equilibrium ensemble defined by the LHS partition
function is in the subensemble defined by the RHS partition
function. As an example, transformation (3) states that for any i, d,
e, j, the structures represented by Qi, j partially consist of sub-
structures represented by Qi,d#1 and Qd,e

b . Consequently, once the
probability Pi, j is determined, it can be used to augment Pi,d#1

and Pd,e
b because the frequencies of the corresponding substruc-

tures within the Qi, j ensemble can be derived from Qi,d#1 and
Qd,e

b . By backtracking through the partition function algorithm and
transforming all recursive updates analagously to (3), probabilities
can be calculated for each recursion.

Starting from the partition function algorithm of Figure 2, the
recursion probability algorithm is obtained by performing three
modifications: (1) the two outermost loops are altered so that the
algorithm starts with the full strand of length l & N and decre-
ments down to subsequences of length l & 1; (2) all recursive
updates are transformed as for (3) above; (3) the order of the
recursion blocks (Qb, [Q, Qm]) is reversed ([P, Pm], Pb). This
last modification is necessary because the recursion order in the
partition function algorithm ensures that if one quantity (e.g., Qi, j)
recurses to another quantity of the same length (e.g., Qi, j

b ) then the
“lower level” quantity (i.e., Qi, j

b ) is calculated first. The reverse
ordering is needed for the recursion probability algorithm, because
Pi, j

b cannot be used until it has been fully computed in the Pi, j

loop.
The pseudocode in Figure 4 details the outcome of these

transformations for the unpseudoknotted case. This modified al-
gorithm reverses the flow of the partition function calculation and
incrementally determines all recursion probabilities (frequencies
of families of structures), based on the probabilities of all super-
structures that directly contain them. Once recursion probabilities
are computed for all i and j, the base-pairing probability pi, j is
simply Pi, j

b , because Qi, j
b is associated with every structure s in

which i ! j appears, and i ! j is associated with exactly one Qi, j
b . By

starting from a more complicated O(N3) partition function algo-
rithm,18,21 the computational complexity of the recursion proba-
bility algorithm can also be reduced to O(N3) as described in the
Appendix.

Pseudoknots

The procedure outlined above for obtaining recursion probability
algorithms is equally applicable to a new partition function algo-
rithm that includes pseudoknots (see the pseudocode of Fig. 21 in
ref. 18). For the unpseudoknotted algorithm, all base pairs stem

Figure 3. Recursion diagram corresponding to recursive update (2),
depicting the addition to Qi, j of partition function contributions for
those structures with rightmost base pair d ! e. See ref. 18 for a
thorough description of the partition function algorithm (with or with-
out pseudoknots) in terms of recursion diagrams.

Figure 4. O(N4) recursion probability algorithm that excludes
pseudoknots. For simplicity, we omit details such as checking for
updates with zero in the denominator (in which case the numerator will
also evaluate to zero and the expression should be skipped).
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from Qb recursions, so the values stored in Pb are precisely the
desired probabilities (i.e., pi, j & Pi, j

b ). For the pseudoknotted case,
Pi, j

b only gives the probability that i and j form a nested pair. The
full base-pairing probability must also take into consideration
those base pairs that are nonnested and lead to pseudoknotted
structures (termed gap-spanning pairs in ref. 18). For these gap-
spanning pairs, there is no single recursion probability that repre-
sents the contribution to pi, j. However, this contribution may be
succinctly represented in terms of Q-type and P-type matrices for
the full pseudoknotted algorithm.

A new set of quantities, Pi, j
bg, will be used to store the base

pairing probabilities of i ! j gap-spanning pairs in pseudoknots.
The most pertinent recursion probability, Pi,d,e, j

g , stores the prob-
ability of a gap structure with outer gap-spanning pair i ! j and
inner gap-spanning pair d ! e corresponding to the partition
function recursion Qi,d,e, j

g (see Fig. 19 in ref. 18). Due to the
structure of the Qi,d,e, j

g recursion, the sum of Pi,d,e, j
g over all values

of d, e precisely gives the probability of an outer pair i ! j

Pi, j
bg (& !

i!d!e!j

Pi,d,e, j
g . (4)

However, the sum of Pi,d,e, j
g over all values of i, j does not give

the probability of an inner pair d ! e, because the same inner pair
may be present in multiple recursions required to define the same
secondary structure. To correctly determine the probabilities of
inner gap-spanning pairs, only the portion of Pg that corresponds
to calling Qg directly from Qgl should be included

Pd,f
bg (& !

i!d"e!f!j

Pi,e,f, j
gl Qi,d,f, j

g Qd(1,e
z exp$##2/RT%/Qi,e,f, j

gl . (5)

Here, Qgl and Qz are partition function recursions used to define
the interior structure of a pseudoknot, and #2 is a pseudoknot
energy parameter (see Figs. 18 and 12 in ref. 18). Allowing
pseudoknots, the total probability of a base pair i ! j is then

pi, j ! Pi, j
b $ Pi, j

bg.

Pseudocode detailing the algorithm for computing recursion
probabilities in the pseudoknotted case is provided in Figure 5,
where the calculation of Pi, j

bg using (4) and (5) has been embedded
at little additional cost. [Note that (4) and (5) use different indices
for Pbg to maintain consistency with the pseudocode.] In the
Appendix, we describe how to reduce the complexity of the
pseudoknotted algorithm from O(N6) to O(N5).

Methods

The standard energy model4 and pseudoknot extension18 are im-
plemented as described previously,18 including dangle energies
and penalties for helices not terminated by a G ! C pair. These
terms do not change the structure of the recursions described in the
pseudocode and are omitted for clarity. Coaxial stacking contri-
butions are not included in the physical model, as it is unclear how

to treat different stackings associated with the same secondary
structure in the context of the partition function. To maintain
consistency with a recent design study,23 dangle energies are
treated analogously to the d2 option in the Vienna package.10

Following this approach, dangle energies are included even if two
helices are separated by one or zero bases, providing some com-
pensation for the neglect of coaxial stacking bonuses.

Applications

The recursion probability algorithm provides a simple, general
method for calculating the frequency of various substructures in
the ensemble of states for a given nucleic acid. Base-pairing
probabilities derived from the recursion probabilities are particu-
larly useful for analyzing secondary structure via dot plot analy-
ses.11 A traditional dot plot depicts the probabilities of forming all
possible i ! j base pairs. In the case of pseudoknots, the dot plot can
be decomposed into two dot plots—one for nested pairs and one
for nonnested gap-spanning pairs.

To see the utility of this decomposition, calculations were run
on wild-type and mutant sequences of a pseudoknot construct
derived from human telomerase RNA.20 Experimental evidence
suggests that this pseudoknot exists in equilibrium with an alter-
native, hairpin structure, and that this equilibrium functions as a
biological switch.19 A two-point mutant, found in a small percent-
age of people, shifts the equilibrium towards the hairpin structure,
leading to a disease known as dyskeratosis congenita.19 Feigon and
coworkers20 examine this shift in equilibrium for segments of the
wild-type and mutant sequences described in Figure 1, revealing
that the pseudoknot conformation dominates the hairpin for the
wild-type sequence (*95% to *5%) but competes roughly equally
in the mutant sequence (*50% to *50%). Using preliminary
pseudoknot parameters,18 energies were computed for both the
wild-type sequence and the two-point mutant on the pseudoknotted
and hairpin structures. The predicted energies in Table 1 match
reasonably well with experimental values.20 For the wild-type
sequence, the disparity between the pseudoknot and hairpin ener-
gies suggests an equilibrium that favors the more stable
pseudoknot. In contrast, the energies for the double mutant se-
quence suggest a more balanced equilibrium. Figures 6 and 7
illustrate that the hairpin conformation has a significant impact on
the pair probabilities for the mutant, but not for the wild-type
sequence.

Base-pairing probabilities can also be used to construct metrics
for evaluating nucleic acid designs. The secondary structure s may
be described by a symmetric N + N matrix S with entries Si, j &
1 if s contains base pair i ! j and Si, j & 0 otherwise. We augment
this matrix by an additional column with entries Si,N(1 & 1 if base
i is unpaired and Si,N(1 & 0 otherwise. Hence, each row sum is
one. For a given sequence of length N, the metric23

n$s*% ! N % !
1"i"N

1"j"N(1

pi, jS*i, j

represents the average number of nucleotides that differ from the
target secondary structure s* at thermodynamic equilibrium. This
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Figure 5. O(N6) recursion probability algorithm that includes a class of pseudoknots. Modifications
required to produce an O(N5) version of the algorithm are noted in comments. See the Appendix for
details.
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is a less stringent metric than p(s*), the probability that the
sequence exactly adopts structure s*; even if p(s*) is not close to
unity, n(s*) can still be small if the equilibrium ensemble is
dominated by structures that differ only slightly from s*.

It is illustrative to compare the two metrics on a real design
problem involving pseudoknots. For example, Winfree et al.14

designed and constructed DNA double-crossover molecules24 that
interact to form a two-dimensional lattice with a pseudoknotted
unit cell. These sequence designs were performed using sequence
symmetry minimization25 to ensure that incorrectly paired subse-
quences of length six would always contain at least one mismatch
and most incorrectly paired subsequences of length five would also
contain a mismatch.14 Lacking DNA pseudoknot parameters, we
examine an RNA analog of their sequence for the portion of the
pseudoknotted unit cell depicted in Figure 8a. The probability of
adopting the target structure is p(s*) & 0.1 and the average
number of incorrect nucleotides is n(s*) & 4.0. The low value of

p(s*) might possibly indicate a cause for concern, but for a
structure with 90 nucleotides and helices of length eight, the
average number of incorrect nucleotides is relatively small. Hence,
it is not surprising that the sequence behaves well experimentally,
demonstrating the correct base-pairing topology despite slight pre-
dicted variations at the ends of helices. The dot plot in Figure 8b
illustrates the similarity between the average structure and the
desired target.

Interestingly, design methods described in previous work23 can
be used, in conjunction with the pseudoknot partition function
algorithm, to find sequences that achieve p(s*) & 0.98 and n(s*)
!! 1. It is unclear whether these sequences would provide any
experimental benefit for this system (even given a perfect energy
model), because the difference between n(s*) , 4 and n(s*) !!
1 may be lost in experimental noise. By contrast, if a sequence
produced p(s*) & 0.1 with n(s*) -- 4, then the equilibrium
ensemble could include important structures differing significantly
from the target structure.

Conclusions

A general transformation rule extends nucleic acid partition func-
tion algorithms to calculate recursion probabilities, which in turn,
can be used to compute base-pairing probabilities. We use this
approach to derive an algorithm for computing base-pairing prob-
abilities starting from a partition function algorithm that includes a
class of pseudoknots. The same strategy will apply to future
partition function extensions that follow the same dynamic pro-
gramming paradigm.

To demonstrate the utility of base-pairing probabilities, cal-
culations were performed on a pseudoknot/hairpin construct
thought to represent an important biological switch. In agree-
ment with experimental evidence, the computational results
indicate that the pseudoknot dominates the hairpin for the
wild-type sequence, but not for the double mutant. Base-pairing
probabilities were also used to examine the ensemble properties
of a synthetic nucleic acid sequence designed to assemble into
a pseudoknotted double-crossover molecule. The average num-
ber of incorrect nucleotides was found to be small, suggesting
that the relatively low computed probability of adopting the

Figure 7. Dot plots for double mutant human telomerase RNA. The
plots are analogous to those of Figure 6. The key difference is
observed in (c), where the hairpin stem appears as both gap-spanning
pairs and nested pairs, indicating the increased significance of hairpin
conformations.

Table 1. Energy Comparisons for Human Telomerase RNA Constructs.

RNA Conformation

Energies (kcal/mol)

)Gexp )Gcalc

Wild-type Pseudoknot #17.8 #18.5b

Hairpin #9.8a #11.5c

Mutant Pseudoknot #11.2 #11.3b

Hairpin #10.5a #11.5c

aExperiments were performed on partial sequences that excluded the 18
nucleotides on the 3' end to prevent the formation of pseudoknots.20 This
truncation does not affect the corresponding )Gcalc.
bA related pseudoknot structure that is otherwise identical but omits the
three consecutive A ! U pairs in the stem with the bulge loop is predicted
to be 0.5 kcal/mol more stable.
cThe secondary structure energy calculation ignores the four consecutive
noncanonical base pairs that are observed to close the interior loop in the
hairpin stem.20

Figure 6. Dot plots for wild-type human telomerase RNA. (a)
Pseudoknot (bottom left) and hairpin (top right) constructs. For (b) and
(c), large dots indicate a pi, j & 0.5 and small dots indicate 0.5 -
pi, j & 0.05. (b) Base-pairing probabilities including pseudoknots
(bottom left) and excluding pseudoknots (top right). (c) A decompo-
sition of the full base-pairing probabilities into gap-spanning pairs
(bottom left) and nested pairs (top right). Note that there are no nested
pairs with significant probability, indicating that pseudoknot confor-
mations are dominating the equilibrium.
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target secondary structure should not significantly affect the
experimental performance of the molecule.

Software Download

The algorithms described in this article are available for download
at http://www.acm.caltech.edu/*niles as part of the NUPACK
software suite.
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Appendix: Reducing Computational Complexity

The algorithms presented in the main text provide an inefficient
treatment of interior loops. By exploiting the form of the interior
loop potential function, the computational complexity of the par-
tition function algorithms excluding and including pseudoknots
can be reduced by a factor of N, where N is the sequence
length.18,21 A detailed description of the “fastiloops” treatment is
provided in ref. 18 and the corresponding Supplementary Material.
The “fastiloops” modification detracts from the simplicity of the
presentation because the necessary recursions do not conform to
the same structure as the other terms in the algorithm. Here, we
describe the extension of this approach to recursion probability
algorithms.

In the unpseudoknotted case, pseudocode for an O(N3) parti-
tion function algorithm is provided in Figure 11 of ref. 18, which
employs the “fastiloops” function of Supplementary Material Fig-
ure S2. To this point, we have assumed that all Q-type values are
accessible at the end of the partition function calculation. For the
“fastiloops” methods, the values Qx, Qx1 and Qx2 are computed on
the fly and discarded to save memory. Hence, for the recursion
probability algorithm, it is necessary to recompute the Qx-type
terms at the same time that the corresponding Px-type terms are
calculated. An O(N3) recursion probability algorithm that ex-
cludes pseudoknots is described in Figure A1, which references the
function “fastiloopsN3” of Figure A2. If pseudoknots are included,
the computational complexity of the recursion probability algo-
rithm in Figure 5 is reduced to O(N5) using “fastiloopsN5” de-
scribed in Figure A3. A few aspects of the “fastiloopsN3” and
“fastiloopsN5” routines deserve mention. It is advisable to review
the relevant sections of ref. 18 and the corresponding Supplemen-
tary Material before proceeding.

An interior loop with closing pair i ! j and interior pair d ! e has
energy Gi,d,e, j

interior, sides of lengths

L1 " $d % i % 1%, L2 " $ j % e % 1%, (6)

and size L1 ( L2. Loops with both L1 & 4 and L2 & 4 are termed
“extensible” and their contributions to the partition function algo-
rithm are calculated using Qx. Furthermore, Qx also contains
information about “possible extensible loops” for which the defi-
nitions of L1, L2 are the same but i and j are not required to
base-pair.

The partition function algorithm examines subsequences of
length l & j # i ( 1, starting with l & 1 and ending with l &
N. Qx is efficiently calculated using the extension identity [see eq.
(15) of ref. 18],

Qi#1,s(2
x ! .$s $ 2%# L1&4

L1(L2&s(2
$ .$s $ 2%# L2&4

L1(L2&s(2

$ /Qi,s
x exp0#/'1$s $ 2% % '1$s%1/RT21 (7)

Figure 8. Computational examination of a pseudoknotted DNA nano-
structure. (a) Secondary structure for a double-crossover molecule that
forms a portion of the unit cell in a two-dimensional lattice.14 For our
computational study, we join the blue and orange strands (arrows
denote 3') into a single strand using auxiliary nucleotides (green) to
facilitate the use of the single-stranded partition function algorithm.18

In the absence of DNA pseudoknot parameters, we consider the RNA
analog 5'-CCAACUCCUAGCGAUUUUUCGCUAGGUUUACCA-
GAUCCACAAGCCGACGUUACA-UUUU-GGAUCUGGUAAG-
UUGGUGUAACGUCGGCUUGU-3', where the interior hyphens de-
note the boundaries of the auxiliary linker segment. (b) Dot plot
analysis of the designed sequence. The bottom left depicts the base-
pairs in the target structure, and the upper right depicts the base-pairing
probabilities. Large dots indicate a pi, j & 0.5 and small dots indicate
0.5 - pi, j & 0.05. The circles indicate the major differences between
the target structure and the calculated pair probabilities.
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which relates Qi,s
x (for subsequences of length l ) to Qi#1,s(2

x (for
subsequences of length l ( 2). The first line “seeds” Qx with cases
at an extension border (L1 & 4 or L2 & 4) for subsequent
extension to longer subsequences. For conciseness, we have intro-
duced the definition

.$s% " exp0#/'1$s% $ '2$#L1 % L2#%

$ '3$e, d, e $ 1, d % 1%1/RT2Qd,e
b ,

where d and e are defined implicitly in terms of L1 and L2. For
implementation purposes, the second line of (7) is calculated
during the l, i loop and temporarily stored in Qi#1,s(2

x2 . The first
line of (7) is added to this contribution in the l ( 2, i # 1 loop.
As a result of this two step procedure, we adopt the convention that
L1 and L2 are defined with respect to the loop index in which they
are calculated (i.e., l, i for the second line and l ( 2, i # 1 for
the first line). This convention facilitates the comparison of the
extension identity with pseudocode.

The recursion probability algorithm examines subsequences of
length l starting with l & N and ending with l & 1. To recompute
Qx in this context, we use the contraction identity

Qi(1,s#2
x ! !

i&1
L1&4,L2&4
L1(L2&s#2

.$s % 2% $ !
j&N

L1&4,L2&4
L1(L2&s#2

.$s % 2%

$ /$Qi,s
x % .$s%# L1&4

L1(L2&s
% .$s%# L2&4

L1(L2&s
%

exp0#/'1$s % 2% % '1$s%1/RT21 (8)

which relates Qi,s
x (for subsequences of length l ) to Qi(1,s#2

x (for
subsequences of length l # 2). The first line “seeds” Qx with cases
that are both extensible (L1 & 4 and L2 & 4) and at an end of the
strand (i & 1 or j & N). For implementation purposes, the second
line of (8) is calculated during the l, i loop and temporarily stored
in Qi(1,s#2

x2 . The first line of (8) is added to this contribution in the
l # 2, i ( 1 loop. We retain the convention that L1 and L2 are
defined with respect to the loop index in which they are calculated
(i.e., l, i for the second line and l # 2, i ( 1 for the first line).

Derivation of the algorithm to compute Px requires careful
consideration. The quantities Qx and Qx2 contain incomplete par-
tition function information for “possible extensible loops,” but
they do not represent subsequence partition functions in the man-
ner of other Q-type matrices. In a normal recursion relation,

Figure A1. O(N3) recursion probability algorithm that excludes
pseudoknots. The algorithm proceeds from longer subsequences to
shorter ones, so in contrast to the analogous partition function algo-
rithm (see Fig. 11 of ref. 18), Qx1 and Qx2 refer to subsequences whose
lengths are shorter (by 1 and 2, respectively) than the current subse-
quence of length l.

Figure A2. Pseudocode for computing interior loop contributions to
Pb in O(N3) as an alternative to the O(N4) interior loop recursion of
Figure 4.
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Q-type matrices on the right-hand side are subsequence partition
functions describing a local structural motif that contributes to the
larger subsequence partition function on the left-hand side. Qi,s

x

contains information about possible extensible loops that may not
actually exist (if i and j are not complementary). The extension
identity (7) passes this potentially useful information on to
Qi#1,s(2

x2 . Consider, for example, a chain of Qx values related by
the extension identity in a case where no complementary i ! j base
pair is encountered while incrementing l by 2 until an end of the
strand is reached. In this scenario, the values of Qx computed in
this chain should not contribute to the corresponding recursion
probabilities Px because the values of Qx are not identified with
any secondary structure in the equilibrium ensemble. Hence, the

calculation of Px requires information about which Qx quantities
ultimately contribute to secondary structures in the ensemble. As a
result, the extension identity (7) cannot simply be transformed
using the standard recursion probability approach, which assumes
that both sides of the equation represent subsequence partition
functions that are assured of contributing to the equilibrium en-
semble. This realization suggests computing Pi,s

x by adding the
probabilities of all internal loops that rely on Qi,s

x to incorporate
information in the partition function.

To calculate Pi,s
x (for a fixed l ), note that Qi,s

x will be invoked
for all interior loops (i', d, e, j') with interior pair d ! e and
closing pair i' ! j' such that

i % i' ! j' % j & 0, L1 & 4, L2 & 4, L1 $ L2 ! s, (9)

where L1, L2 and s are defined with respect to i and j. Hence, a
particular loop (i', d, e, j') is identified with a set of Qi,s

x terms
that are related by the extension identity (7). Alternatively, a
particular Qi,s

x term is identified with all of the interior loops (i', d,
e, j') to which it ultimately contributes via the extension identity.
Consequently, from the notion of recursion probabilities intro-
duced earlier, Pi,s

x (for a fixed l ) should be the sum of the
probabilities of all interior loops (i', d, e, j') that satisfy the
properties (9). For the case where i # 1 " N # j (the case i #
1 - N # j yields analogous results), it follows that

Pi,s
x ! !

i'&1

i !
L1&4,L2&4
L1(L2&s

p$i', d, e, j'%, (10)

where p(i', d, e, j') is the probability of the (i', d, e, j') interior
loop in the equilibrium ensemble of secondary structures. Because
Pi(1,s#2

x2 is defined similarly, with l and s decremented by 2, it
follows that

Pi(1,s#2
x2 ! !

i'&1

i(1 !
L1&5,L2&5
L1(L2&s

p$i', d, e, j'%, (11)

where L1 and L2 are temporarily defined with respect to i and j to
retain the size constraint L1 ( L2 & s. Comparing (10) and (11),
we then identify the relationship

Pi(1,s#2
x2 ! !

L1&5,L2&5
L1(L2&s

p$i', d, e, j'%#i'&i(1, j'&j#1

$ $Pi,s
x % !

i'&1

i

p$i', d, e, j'%#L1&4,L2&4
L1(L2&s

% !
i'&1

i

p$i', d, e, j'%#L1&5,L2&4
L1(L2&s %,

where L1 and L2 continue to be defined with respect to i and j.
Finally, we shift the indices in the first line so that L1 and L2 are
defined with respect to i ( 1 and j # 1

Figure A3. Pseudocode for computing interior loop contributions to
Pg in O(N5) as an alternative to the O(N6) interior loop recursion of
Figure 5.
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Pi(1,s#2
x2 ! !

L1&4,L2&4
L1(L2&s#2

p$i', d, e, j'%#i'&i(1, j'&j#1

$ $Pi,s
x % !

i'&1

i

p$i', d, e, j'%#L1&4,L2&4
L1(L2&s

% !
i'&1

i

p$i', d, e, j'%#L1&5,L2&4
L1(L2&s %.

(12)

This identity relates Pi,s
x (for subsequences of length l ) to

Pi(1,s#2
x (for subsequences of length l # 2). For implementation

purposes, the second line is calculated during the l, i loop and
temporarily stored in Qi(1,s#2

x2 . Each of the sums of form ¥i'&1
i

operates on a single term, which is a subset of the terms in the
definition of Pi,s

x (10). Hence, the sums of form ¥i'&1
i in (12) may

be evaluated implicitly as Pi,s
x times a quotient with Qi,s

x in the
denominator and the corresponding subset of Qi,s

x in the numera-
tor. The first line is added to this contribution in the l # 2, i ( 1
loop. There, the summation corresponds to exactly those loops
treated by Qi(1,s#2

x in the case where i ( 1 and j # 1 base pair.
As usual, L1 and L2 are defined with respect to the loop index in
which they are calculated (i.e., l, i for the second line and l # 2,
i ( 1 for the first line).
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